Stochastic Evolution as a Generalized Moran Process
نویسندگان
چکیده
This paper proposes and analyzes a model of stochastic evolution in finite populations. The expected motion in our model resembles the standard replicator dynamic when the population is large, but is qualitatively different when the population size is small, due to the difference between maximizing payoff and maximizing relative payoff. Moreover, even in large populations the asymptotic behavior of our system differs from that of the best-response and replicator dynamics due to its stochastic component. * Department of Economics, Harvard University, [email protected] ** Institute of Statistics, Aachen University, [email protected]. *** Program for Evolutionary Dynamics, Harvard University, [email protected] *** Department of Mathematics, MIT, [email protected]
منابع مشابه
Stochastic differential inclusions of semimonotone type in Hilbert spaces
In this paper, we study the existence of generalized solutions for the infinite dimensional nonlinear stochastic differential inclusions $dx(t) in F(t,x(t))dt +G(t,x(t))dW_t$ in which the multifunction $F$ is semimonotone and hemicontinuous and the operator-valued multifunction $G$ satisfies a Lipschitz condition. We define the It^{o} stochastic integral of operator set-valued stochastic pr...
متن کاملThe rate of multi-step evolution in Moran and Wright-Fisher populations.
Several groups have recently modeled evolutionary transitions from an ancestral allele to a beneficial allele separated by one or more intervening mutants. The beneficial allele can become fixed if a succession of intermediate mutants are fixed or alternatively if successive mutants arise while the previous intermediate mutant is still segregating. This latter process has been termed stochastic...
متن کاملContinuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative L'evy noise are considered. The drift term is assumed to be monotone nonlinear and with linear growth. Unlike other similar works, we do not impose coercivity conditions on coefficients. We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. As corollaries of ...
متن کاملOn time-dependent neutral stochastic evolution equations with a fractional Brownian motion and infinite delays
In this paper, we consider a class of time-dependent neutral stochastic evolution equations with the infinite delay and a fractional Brownian motion in a Hilbert space. We establish the existence and uniqueness of mild solutions for these equations under non-Lipschitz conditions with Lipschitz conditions being considered as a special case. An example is provided to illustrate the theory
متن کاملMapping Activity Diagram to Petri Net: Application of Markov Theory for Analyzing Non-Functional Parameters
The quality of an architectural design of a software system has a great influence on achieving non-functional requirements of a system. A regular software development project is often influenced by non-functional factors such as the customers' expectations about the performance and reliability of the software as well as the reduction of underlying risks. The evaluation of non-functional paramet...
متن کامل